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This paper analyses the effect of an alternating magnetic field of low frequency w on 
a cylindrical tank of liquid metal. Previous worlC$ith higher-frequency fields has 
focused attention on the mean recirculating motion, ;but in the low-frequency limit 
periodic motion and surface waves become important. We show that a system of 
forced standing axisymmetric waves of frequency 2w is established, and that the 
growth of non-axisymmetric modes is governed by a coupled system of Mathieu-type 
equations. The stability regions associated with this system are discussed and it is 
shown that the most easily excited transition to a non-axisymmetric mode is 
subharmonic, with frequency w .  Comparison with experiment shows that the theory 
gives qualitatively correct predictions. 

.. 

1. Introduction 
When a liquid metal is placed in an alternating magnetic field, electric currents are 

induced which interact with the original magnetic field to create electromagnetic 
body forces. The consequent flow has a number of important applications in liquid- 
metal technology, including stirring of continuously. cast steel and of the melt in 
induction furnaces. 

The Lorentz force generally consists of two components : (i) a mean component, (ii) 
an oscillatory component whose frequency is twice that of the applied magnetic field. 
The effects of the mean component have been extengively studied by many authors 
(Sneyd 1971, 1979; Tarapore & Evans 1976; Mikelson, Jakovitch & Pavlov 1978; 
Fautrelle 1981 ; Moffatt 1984; Moore & Hunt 1984; Trakas, Tabeling & Chabrerie 
1984; Taberlet & Fautrelle 1985; Davidson, Hunt & Moros 1988). It is generally 
responsible for a mean recirculating motion - the so-called electromagnetic stirring. 

The oscillatory component of the Lorentz force has been largely neglected by the 
above authors, who were concerned with high frequencies. The first experiments in 
the low-frequency regime (w < 10 Hz) were performed by Galpin & Fautrelle (1992, 
hereinafter referred to as GF). They have shown that the oscillatory component may 
generate complex free-surface motions which consist of a variety of standing-wave 
patterns, depending on the frequency and magnetic field strength. These surface 
waves present some similarities with the phenomenon of parametric resonance, the 
best known study of which is due to Faraday (1831).who observed vibrations of a 
liquid contained in an oscillating vessel. He noticed free-surface oscillations whose 
frequency was half that of the vessel. A linear analysis of this problem has been 
carried out by Benjamin & Ursell (1954), who showed that in the inviscid small- 
amplitude case the growth of the various free-surface modes is governed by a 
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decoupled system of Mathieu equations, and that subharmonic instability could 
occur. More recently Miles (1984) has considered resonant forcing of waves in a 
circular cylinder by horizontal oscillations, and a general review of parametric 
excitation is given by Miles & Henderson (1990). Another kind of parametric 
instability has been discovered by Briskman & Shaidurov (1968). They showed that 
when a liquid free surface is subjected to a normal alternating electric field, small- 
amplitude free-surface displacements are governed by a Mathieu equation as in the 
Faraday problem. Their theory is confirmed by experiment. 

The aim of this paper is to analyse some of the frec-surface instabilities observed 
by GF. We consider a cylindrical liquid-metal pool whose axis is vertical, placed in 
a uniform vertical alternating magnetic field. I n  the low-frequency limit (a more 
precise criterion is given in $2) the magnetic field due to the induced currents is 
negligible in comparison with applied field B,. The induced currents are in 
quadrature (90" out of phase) with B, and the corresponding electromagnetic forces 
are purely oscillatory to leading order (Taberlet & Fautrelle 1985). Furthermore, if 
the applied field is axial and uniform as considered in this paper, the basic 
electromagnetic force is both radial and irrotational. We develop a linear theory, first 
of axisymmetric standing waves (m = 0 ) ,  and then find that the growth of non- 
axisymmetric modes (m = 1,2 ,  . . .) is described by a system of Mathieu equations. 
We note two important features of the system, namely: (i) the existence of forced 
axisymmetric waves, (ii) the coupling of the various radial modes for a given m, 
which is due to the radial dependence of the basic induced electric current. 

The governing equations are derived in $2. A general discussion of stability 
properties is given in $3, and in $4 the results are discussed and compared with 
experiment. Our conclusions are summarized in 95. 

2. Derivation of equations 

We consider a uniform alternating magnetic field 

(2.1) 
acting on a body of conducting fluid of density p and electrical conductivity u. The 
induced electric field drives an oscillatory electric current in the fluid, which interacts 
with the applied magnetic field to generate a Lorentz force having a steady 
component and one oscillating with angular frequency 2w. 

2.1. Approximations 

B = B, sin (wt )  z" 

The MHD equations (in standard notation) are 

aB 
V x E = - - - ,  

at 

V x B = p0 J,  (2.3 ) 

J = a ( E +  V x B),  (2.4) 
DV 
Dt 

p - = - V p  + J x B, 

v .  v =  0, (2.6) 
where the flow is assumed inviscid and incompressible. We shall make two 
approximations throughout this work : first the magnetic diffusion time L2y, u (L a 
typical lengthscale) is assumed much smaller than the field-oscillation period, so 

wL2,u,, u/2n = E (say) 4 1. 
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Essentially we are assuming that the field is oscillating slowly, with w < 10 Hz for 
practical purposes. This assumption also means that the field due to induced currents 
is negligible in comparison with the applied field, and may be neglected. Second, we 
shall neglect the induced electric field term V x  B in (2.4). Equations (2.2)) (2.4) and 
(2.5) give order of magnitude estimates 

E x LwB,, J x crLwB,, v x crLBi/4p, (2.7) 

the factor of 4 being introduced to simplify subsequent formulae. The second 
assumption is therefore valid provided 

where S is the magnetic interaction parameter, This means essentially that the 
magnetic field must not be too intense. Taking L = lo-' m, ,uo = 4n x lo-' Q s m-l, 
cr = los i2-l m-', B, = lo-' T, as in the experiments of GF we find for the frequency 
range 1 < w < 10 Hz, 

so the assumptions seem reasonable. 

< 6 < lo-', 0.04 > S > 0.004, 

If we introduce non-dimensional variables 

B = BOB', J = ~ r w a B , S ,  

then (2.2) and (2.3) can be written in the form 

a s  
at' 

V X S = - -  

V X B '  = €1. 

To zeroth order, (2.9) gives V x B = 0, so we can write 

B = B,[sin (wt )  i + O ( E ) ] .  

Thus we may neglect the magnetic field due to the induced electric current J, which 
is responsible for the mean component of the Lorentz force. From (2.8) we see that 
Band Jare  90" out of phase, so to leading order the Lorentz force is purely oscillatory 
with frequency 2w. The presence of slight damping, such as viscosity, ensures that 
the ensuing fluid motion too will eventually become purely periodic with frequency 
2w (provided of course that the forcing frequency is not close to a resonance of the 
system). 

2.2. Axisymmetric modes in a cylindrical tank 
Experiments were performed in a cylindrical tank, so this is the geometry we 
consider in detail - a body of liquid metal bounded by rigid non-conducting walls 
r = a, - h  < z < 0, a rigid base z = -h,O < r < a, and p free surface z = 7. 

The induced electric field is azimuthal : E = E(r ,  t )  8, and substitution into (2.2) 
yields 

The induced current is therefore 

r-l a/& (rE) = -wB, cos (wt ) ,  so E = -!pB, r COB (ot). 

J = - J,(r/a) cos (ot) d, J I  = +crwBo a, 
14 FLM 239 
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and the Lorentz force, 
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F = -F, ( r / a )  sin (2wt)  i ,  F, = $JIBB,. 
The fluid velocity estimate (2.7) shows that the ratio of the convective to time 

derivatives in D V/Dt is of order S (which has already been assumed small), so (2.5) 
is approximated by 

(2.10) 
av 
at 

p-=-Wp+F. 

Taking divergences and assuming incompressibility yields 

(2.11) 
- 2F0 

V'p = V . F =  - sin (2wt). 

Equation (2.10) and the usual linearized kinematic condition at the free surface, 
imply 

a 

while zero normal flow a t  the walls gives 

(2.12) 

(2.13) 

A particular solution of (2.11) and (2.13) is 

- F, r2 

2a 
p = -  sin (2wt) .  

To obtain the general solution we expand the free-surface displacement in the form 

(2.14) 

where J,(x) is a Bessel function, and 1, the nth zero of Jk(1a). Note that since 

1 rJo(ln r )  dr = 0, 

the mean free-surface displacement is zero. Using the kinematic free-surface 
condition (2.12) we can now write 

cosh [l,(z+h)] m F r2 
p = p 0 - L s i n ( 2 w t ) - p  C A J(Z 

2a n=l  O n r )  l,sinh(l,h) ' 
(2.15) 

where p ,  is a function of time only. At the free surface, the total pressure is zero, so 
to first order in 17, 

where P = -pgz is the unperturbed pressure. Since the mean value of 7 is zero so 
must be the mean value of (p),,,, whence from (2.15) p, = iF,asin ( 2 4 .  Substituting 
for 7 and p from (2.14) and (2.15) one finds 
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Vla = 0.06 

r = O  

s la  = -0.06 
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FIGURE 1. (a) Free-surface profiles for forced axisymmetric waves, as given by equation (2.18). The 
results are for a tank of mercury of radius 94 mm and depth 124 mm (as used by GF) and an applied 
field strength 0.1 T. All quoted frequencies are in rad 5-l. Note that the first six natural frequencies 
me 19.89, 26.91, 32.41, 37.09, 41.24, 45.01. (b )  Theoretical (A) and experimentally measured (0 )  
free-surface profile for w = 9.39 and a current of 82.5 A. 

Multiplying (2.16) by rJo(Z, r ) ,  integrating from r = 0 to r = a, and using the identities 

d 
dx -WJn(x)) = ZnJn-l(x), J2(z) = -2x-'J;(x)-J0(x), 

we obtain the following differential equation for A, : 

- Wo tanh (I, h) k', + tanh ( I ,  h) I, gA, = c, sin ( 2 4 ,  c, = (2.17) 
p z ~ a ~ ( z k a )  * 

Since we are concerned only with the eventual quasi-steady state, in which the fluid 
motion is purely periodic with angular frequency 20, we may assume A, proportional 
to sin (20t). Substituting the appropriate solution of (2.17) into (2.16) we obtain 

(2.18) 

where wg = (g/a)i is a gravitational frequency, = tanh (I, h) I, g represents the nth 

14-2 
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20 18.79 25.51 50.90 
Nearest o, 19.89 26.92 51.72 
7, (experimental) 4.2 3.4 2.6 
T,I, (theoretical) 4.2 3.4 2.5 

TABLE 1. Comparison of experimental and theoretical free-surface elevations yo at the centre of the 
tank. In each case the current in coils was 45.0 A, giving B, = 0.1 T. All length measurements 
are quoted in mm. 

resonant frequency, and S = vB:/4pw is the interaction parameter. Since we have 
assumed S < 1 ,  the free-surface displacements will be small compared with the 
cylinder radius, except when w is close to one of the natural frequencies w,. In this 
case our linearized analysis leading to (2.18) is invalidated by the large displacements. 
Physically these large displacements are limited by nonlinear effects and dissipation 
(e.g. viscosity). 

Figure 1 (a )  shows free-surface profiles calculated from (2.18) for various 
frequencies used in the GF experiments. Note that both the amplitude and 
wavelength decrease as w increases. It is clear from (2.18) that the dominant mode 
will be that whose natural frequency w, is nearest to 2w. Figure l ( b )  compares a 
theoretical and an experimentally measured free-surface profile, and table 1 lists 
observed and theoretical maximum amplitudes vo at the centre of the tank, for 
various u. 

2.3. Growth of non-axisymmetric perturbations 

2.3.1. Current perturbation 

In the axisymmetric state the purely azimuthal electric current J is unperturbed 
since it flows parallel to the free-surface contours. However when 7 depends upon 8, 
the current flow must be modified to follow the contours of the free surface and 
satisfy the boundary condition JeiI = 0. 

We now consider a free-surface perturbation of the form 

where m is a positive integer and A, the nth zero of J,(Aa). 
Letj, be the electric current perturbation, b, the magnetic field due tojm, and V,  

the corresponding flow perturbation. (We shall generally use the subscript m to label 
the eime variation in any variable.) If h, is a typical magnitude of qm, then the 
condition that jm be parallel to the free-surface implies I,/ = O(mh,J,/a). For 
simplicity we shall consider only the larger m modes - say m 2 5. Indeed in the GF 
experiments many of the observed modes corresponded to larger values of m, 
specifically m = 5, 8, 12, 23. Now consider the eims component of (2.4), 

j ,  = u(E, + V,  x B+ V, x b,). 

On the right-hand side the last two ‘induction’ terms are smaller than the first 
‘geometrical’ term by a factor m-l, and can be neglected. 

To leading order (2.9) gives V x b, = 0, and hence b, = 0. Using the above 
large-m approximation we find 

V x j ,  = u V x  Em = -v- a b m  - - 0, 
at 
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so we can write j ,  = VV say. To leading order in h, the unit normal vector to the free 
surface is f - V r ,  and the condition of zero normal current flow implies 

To leading order in h,, this gives 

imJ, 
a 

cos (wt )  7,. 

Since V - j ,  = 0 and no current flows across any boundary, v must also satisfy 

v2v = 0, (g3r-o,a = 0, (g3 = 0. 
2--h 

Introducing the harmonic functions 

(2.19) 

we can write the solution for V as 

m 

V = -imJ,acos(wt) 2 a,(t)Q,. 
n-1 

2.3.2. Pressure perturbation 

the following conditions : 
The body force f, = VV x Bo sin (wt) 2 due to the surface perturbation r,~, satisfies 

where for compact notation we use the convention that repeated suffixes i or j only 
are summed from 1 to infinity. 

The linearized elrns-component of the equation of motion is 

where uo is the axisymmetric velocity field associated with the forced free-surface 
displacement (2.18). An order of magnitude analysis shows that 

and using again our large-m approximation we neglect forcing due to the nonlinear 
terms. (Although these terms are O(8) compared with au,/at, their role in the 
equation of motion is that of weak parametric forcing, similar to that of fk. It is with 
this latter term therefore that they should be compared.) We can thus approximate 
the equation of motion by 

P- avrn - - -VPm + f m *  (2.20) 
at 
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The pressure perturbation p ,  therefore satisfies the following : 

V 2 p ,  = 0, (2) = 0,  r$) = Fom2sin (2wt) eimeaiZ,. (2.21a*) 
2--h r-a 

The kinematic condition a t  the free surface is 

and the eims-component is 

To leading order in the magnetic interaction parameter S this gives 

which together with the z-component of (2.20) yields the boundary condition 

(2.22) 

The solution for p ,  is found by writing p ,  = p A  +pB ; p ,  satisfies (2.21 a, b )  and (2.22) 
and has vanishing radial derivative on r = a ;  p ,  satisfies (2.21 a-c) and has a 
vanishing z-derivative on z = 0. The obvious solution for p ,  is 

pA = -pa2Ui Qi. 

To find p B  we expand 2, as a Fourier series in the form 

ZJZ) = y:]cosr$), (2.23) 

where now the repeatedj is summed from 0 to 00 and the coefficients y:] are given 
in the Appendix. Now the boundary condition (2 .21~)  can be written in the form 

(F) = Fo m2 sin (2wt) eimeai yi j )  cos 
r-a 

We introduce the harmonic functions R, defined by 

RJr ,  8, z )  = eirne$Jr) cos 

where 

and I ,  is a modified Bessel function. Since the R, satisfy 

= 0, (!!) = l e i m e c o s p y )  
r-a a 

it follows from (2 .21~)  and (2.23) that the solution for p ,  is 

ps = Fo m2a sin (2wt) ai yC) R,, 

(2.24) 
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so with (2 .22)  we find 

p = Fo m2 sin (2wt) a, yi3)R,-pu2di,(t) &,. 

2.3.3. System of equations 
A t  the free surface z = 0 the total pressure must vanish: 

(Po + Prn)z-To+qm = PSV,  

and taking eime components gives 

417 

(2.25) 

The first term is O ( S )  compared with the other two and can be neglected, so 
substituting for p from (2.25) yields 

(2 .26)  

Now multiplying this equation by r$,(v) and integrating from r = 0 to r = a we 
obtain 

(2.27) 

where the coefficients y;; are defined in the Appendix. Finally, the system can be 
written in the form 

(2.28a, b )  

where Lo = Fo/pg is a dimensionless number measuring the ratio of magnetic to 
gravitational forces, and Qi = g A ,  tanh ( A ,  h) are natural frequencies of the mth 
mode. Explicit formulae (A 6a, b )  are given for the coefficients G,, in the Appendix. 

din + Qi[a, -Lo sin (2wt) C,, ail = 0, C,, = m 2 yk, ( 1 )  Y,,, ( 2 )  

Equations ( 2 . 2 8 ~ )  are a generalization of the simple Mathieu equation 

* + g / z  [1 + L  cos (ot)] x = 0, 

which describes the motion of a simple pendulum of length I whose upper support 
point oscillates vertically with amplitude L and frequency w .  In the case of the 
Mathieu equation it is possible to divide the ( w ,  L)-plane into regions of instability 
and stability, where solutions respectively grow or decay, and one would expect there 
to be a similar stability boundary for the system ( 2 . 2 8 ~ ) .  If the parameters are such 
that (w,  Lo) lies in the unstable region, then non-axisymmetric disturbances with 
azimuthal mode number m will grow-in other words there will be a symmetry 
breaking. The dominant mode m will be that with the largest growth rate. 

3. General remarks on stability 
Equations ( 2 . 2 8 ~ )  are linear, with coefficients which are periodic functions of time. 

The stability of such systems is investigated by calculating the period advance 
mapping gT (see e.g. Amol’d 1973) which advances the solution in time by one period 
T = x / w .  Thus if X ( t )  is the vector of unknown functions and their first derivatives, 
i.e. 

one can write 
&(t)  = al(t), X,( t )  = o i l @ ) ,  X&) = a&), . * .  , 

X(t  + T )  = gT X( t ) .  
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When the system is truncated to say N unknown functions, g, is represented by a 
constant 2iV x 2N matrix, G, say, which may be computed numerically. If G, has an 
eigenvalue with absolute value greater than one, GF will be unbounded as n+ co and 
the system will be unstable. Conversely if all eigenvalues are less than one in absolute 
value the system will be stable. 

Were the coefficient matrix C symmetric, ( 2 . 2 8 ~ )  could be written as a 
Hamiltonian system, and the theory of Gel’fand & Lidskii (1958) could greatly 
simplify the task of determining stability boundaries. Unfortunately C is not 
symmetric (see (A 6)) but several useful properties of Hamiltonian systems 
nonetheless remain valid. If ( 2 . 2 8 ~ )  is written as the first-order system 

k= V(X) (3.1) 

then it is easily verified that V. V = a&/aX, = 0, and that volume is conserved in 
phase space (cf. Liouville’s theorem for a Hamiltonian system). Thus the matrix G, 
preserves volume, so we can write 

2N 
det (G,) = n A, = 1, 

I-1 

where the A, are the eigenvalues of G,. The identity sin (2wt )  = sin [2w(to--t)], where 
to = 7c/2w, implies that if X(t)  is a solution of (3.1), then so is X(to-t ) .  Also, it can be 
shown (see e.g. Jordan & Smith 1987, p. 248) that if A is an eigenvalue of G, then 
the system has a solution X ( t )  such that 

X( t+T)  =AX@).  

X ( t + T )  = l/AX(t), 

If we write the solution X(to--t) as x(t) say, then 

so A-’ must also be an eigenvalue. Thus the eigenvalues of G, occur in reciprocal 
pairs, i.e. it is a reciprocal matrix as defined by Gel’fand & Lidskii (1958). Moreover 
since G, is real, eigenvalues must occur in complex-conjugate pairs, and hence in 
quadruples of the form 

When the eigenvalue is real, or lies on the unit circle this quadruple degenerates to 
a pair. 

When the system is stable, (3.2) shows that each Ai lies on the unit circle. 
Transition to instability can occur either (i) when two eigenvalues ‘ collide ’ a t  f 1 
and move off in different directions along the real axis ; or (ii) when two pairs collide 
simultaneously at efie and move off radially, two inwards and two outwards from the 
unit circle (figure 2). We shall refer to these as type I and type I1 transitions 
respectively. 

3.1. Resonance points on the axis Lo = 0 
From a practical point of view the important transitions are those which take place 
in the vicinity of the axis Lo = 0. Such instabilities, triggered by weak threshold 
magnetic fields, will be most easily observed. When Lo = 0 the system ( 2 . 2 8 ~ )  
degenerates to N uncoupled simple harmonic oscillators, and it is easily shown that 
the matrix G, is block diagonal, of the form 

reie, , l/reie, l/re-ie. (3.3) 

cos (Qi T )  1/52, sin (52, T)) 
G, = diag (Bl, B,, . . . , Bn), B, = 
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FIGURE 2. Eigenvalues in the complex plane (a) during a type I and (b) during a type I1 transition. 
The leftmost diagram is just before, and the rightmost just after the onset of instability. 
Eigenvalue positions are represented by black dots, and the circle shown is the unit circle. 

The eigenvalues of GT are thus efiRiT, i = 1 , 2 , .  . . , N ,  and a type I transition will 
occur when 0, T = 51, n / w  = kn where k is a positive integer. Thus type I transitions 
occur at  frequencies given by 

w = S Z , / k ,  i = 1 , 2  ,..., N ,  k = 1 , 2 , 3  ,.... (3.4) 
Type I1 transitions will occur when Qi T = T+ 2kn, i.e. when 

51 +51 q-0 #=u, #=- 
2k 2k ’ 

(3.5a, b )  

where i a n d j  range from 1 to N ,  and k is a positive integer. 
The frequencies (3.4) and ( 3 4 ,  which we call resonance points, represent only 

potential transitions to instability - it may turn out that when Lo increases slightly 
from zero, the pair (or pairs) of eigenvalues which have collided will continue around 
the unit circle in the complex plane, rather than branching inside and outside. The 
question as to whether instability occurs or not can be decided by calculating 
asymptotic expansions of the solutions of ( 2 . 2 8 ~ )  for small Lo. The results of Nayfeh 
& Mook (1979) show that unstable transitions for small positive Lo always occur a t  
resonance points (3.4) when k = 1. The asymptotic expansion of the unstable 
eigenvalue in the vicinity of this resonance is 

h = - l - ~ n ~ C , , ~ L , + O ( L ~ ) ,  (3 .6)  
so this is called a strong transition in the sense that the eigenvalue moves a distance 
of O(Lo) outside the unit circle. 

For k = 1, in the neighbourhood of the type I1 resonances ( 3 . 5 ~ )  one finds (Nayfeh 
& Mook 1979) 

Thus the resonances ( 3 . 5 ~ )  with k = 1 again represent a strong transition since C,, 
and Cji have the same sign. Similarly, the asymptotic expansion in the vicinity of a 
(3 .5b )  resonance is 

and no transition occurs since the coefficient of Lo is purely imaginary. 
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(a\ 

W l Q ,  

FIQURE 3. Stability regions in the (w,L,)-plane for m = 5 .  (a,) m = 5 ,  N =  2 ;  (6)  m = 5, N = 4. 
(N is the Fourier-Bessel series truncation level.) 

It can be shown (Nayfeh & Mook 1979) that  the resonance points (3.4) with 
k = 2 also represent type I transitions to instability, but these are weak in the sense 
that the eigenvalue moves only a distance O(Li) outside the unit circle, giving 
correspondingly small growth rates. Weak transition to instability a t  the type I1 
resonance points also occurs for k = 2. 

The higher resonances k 2 3 have not yet been fully analysed. At a type I 
resonance point any growth rate must be of order Li or weaker (Nayfeh & Mook 
1979) and it seems likely that our system behavcs like a simple Mathieu equation, 
having instability regions of width O(Lt)  with growth rates also O(Lt).  A careful 
numerical search fails to detect instability in the immediate vicinity of these 
resonance points. Nevertheless, they appear to attract 'tongues ' of instability, which 
eventually become so weak and narrow that the thread-like link to  the &,-axis is 
undetectable. 

Figure 3 shows computed stability boundaries for m = 5 with the infinite series 
truncated to N = 2 or 4. (The behaviour for other m is qualitatively similar.) To 
determine stability a t  a given point ( w ,  8) the system of differential equations was 
solved numerically with an RK8 routine to calculate the time-advance matrix G, 
whose eigenvalues were then dctcrmined by means of the NAG routine FOBAFF. The 
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stability boundary was then traced using a contour-following routine. As predicted, 
the boundary descends to the Lo = 0 axis at  the points of unstable resonance where 
k = 1 or 2,  and the attracting influence of the k 2 3 points is evident. The instability 
region is dominated by the strong (3.4) resonance for k = 1 and i = 1, because C,, is 
always by far the largest diagonal element. Equation (3.6) shows therefore that the 
largest growth rates occur at this resonance. 

Although the level of truncation N = 4 is small it should be enough to include most 
physically observable transitions. As N increases new resonances are introduced, but 
the coefficient CNN decreases approximately as N - 2  (see (A 6 b ) )  so the associated 
parametric instabilities become progressively weaker. Moreover since a, increases 
approximately as Ni ,  the introduction of higher natural frequencies gives rise only to 
large-k resonance points in the vicinity of a given field frequency w (see (3.4), (3 .5)) .  
For k 3 3 the associated instabilities are extremely weak, and in practice will be 
damped by viscosity or surface tension. 

3.2. Spectrum of solutions 
Floquet theory shows that if h is an eigenvalue of G,, then there exists a solution of 
the form 

where P(t)  is periodic with period T .  Now P ( t )  will have a Fourier series expansion 
in terms of e2inwt, with n ranging over the integers. Thus if h = peiB where p and 0 are 
real, a typical term in the expansion of X ( t )  is 

X(t)  = htl'P(t), 

CptlT eiwt(2n+~/x) 

where c is a constant. For the strong transitions (3 .4)  with k = 1, 0 = fn and the 
frequencies (2n+ 1)  w will appear in the spectrum. We argued above that this strong 
transition is the most likely to be observed, so we would expect the ensuing 
subharmonics to dominate the spectrum. The weaker k = 2 transitions correspond to 
0 = 0 and will generate no new frequencies. 

In the case of the ( 3 . 5 ~ )  k = 1 transitions, 0 = fQtn/w,  and we would expect to 
observe frequencies 

which are not rational multiples of the fundamental 20. 

1 

2nw+SZ,, 

4. Discussion 
In  this section we compare our theory with the experimental results of GF bearing 

in mind that the analysis is idealized, assuming a uniform applied magnetic field, and 
very small shield parameter (6). 

4.1. Forced axisymmetric waves 
The forced standing waves are described by (2.18). It can be seen that the dominant 
mode n is the one whose eigenfrequency is closest to twice the applied field frequency. 
Provided the aspect ratio of the tank is of order unity so will be the term tanh ( I ,  h) 
in (2.18), and the wavelength L and amplitude 7 of the standing waves will be given 

L M gw;2 x gw-2, = 0 ( ~ - 3 ) .  
by 

This behaviour is consistent with the experimental observations. Standing waves are 
no longer observable when the applied field frequency is greater than approximately 
10 Hz (see figure 1).  
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Table 1 shows good agreement between theoretical and experimental wave heights 
at the centre of the tank for three different frequencies, and figure 1 shows similar 
agreement for a wave profile. We can be confident that the essential physics of the 
standing waves has been accurately modclled. 

4.2. Parametric instability of non-axisymmetric modes 
Our theory predicts that non-axisymmetric modes ( m  >, 1 )  will grow for certain 
ranges of the parameters w and Lo representing applied frequency and (dimensionless) 
magnetic field strength. The strongest instability is subharmonic. This transition has 
indeed been observed by GF, and generally dominates the observed spectra. 

A detailed quantitative comparison with the experiments is difficult. The first 
difficulty arises in the determination of the theoretical stability boundary in the 
(w,L,)-plane. The accurate computation of that boundary may be obtained in 
principle by a high level of truncation N ,  but i t  is not clear whether the form of the 
boundary converges as N - t  a. As N increases, additional resonances Sl, /k ,  etc. are 
introduced, and new ‘tongues’ of instability descend towards the Lo = 0 axis. 
However, for a resonance point O,/k to stay near a given applied frequency w ,  k 
must increase with N (approximately as N ; ) .  The analysis of Nayfeh & Mook (1979) 
indicates that parametric instability in the vicinity of Q,/k becomes progressively 
weaker with increasing k, the growth rates and tongue widths being of order Li. Thus 
any new resonance points introduced near a given w for larger N become progressively 
weaker as N increases, and are likely to disappear when any form of damping is taken 
into consideration. Thus for practical purpose a modest truncation should suffice 
and indeed all experimentally observed transitions occurred close the strongest 
transition 52,. 

A second difficulty concerns the effects of viscosity and surface tension. The former 
will have a smoothing effect, especially on the sharp tongues of instability, and delay 
the onset, as shown by Benjamin & Ursell (1954) and Ciliberto & Gollub (1985). 
Surface tension on the other hand will slightly modify the resonant frequencies. It is 
important to note that the electromagnetic force, and hence the velocity field, is 
rotational in the presence of non-axisymmetric modes, so viscous dissipation occurs 
in the body of the flow. Nevertheless, the Reynolds number based on the frequency 
and wavelength L, of the rn = 1 mode, namely 

Re = wLt/v, 

is generally very large in the quoted experiments, and such viscous effects must be 
negligible. As noted by Benjamin & Ursell (1954) viscosity plays a more important 
role in the sidewall boundary layers. An estimate of the ratio between the pressure 
variations due to gravity and the viscous wall friction 7 may be obtained as follows. 
The boundary-layer thickness S and viscous stress 7 are given by 

Using typical values for mercury, w = 10 s-l, p = 1.36 x lo4 kg mP3, v = lo-’ m2 s-l, 
the value of the ratio of wall friction to hydrostatic pressure, 7/pgy = loP2. Thus it 
appears that viscosity is still negligible except for the highest frequencies. As regards 
surface tension, its effect becomes non-negligible as soon as the characteristic 
lengthscales of the free surface are less than the typical length (y/pg)i .  Even in 
mercury this lengthscale is very small - approximately 2 mm. 

Throughout this analysis we have neglected the steady velocity field arising from 
the mean component of the Lorentz force. Numerical calculations performed by GF 
using a k-e turbulence model, indicate that a/VA = O( loP2), where is a typical mean 

S = ( v / w ) i ,  7 = pvwy/s.  



Parametric resonance in low-frequency magnetic stirring 423 

wGF(rad/s) m m' 9, 

21.15 3 3 20.32 
25.32 5 5 25.88 
31.74 8 8 31.73 
37.68 12 12 38.07 
43.96 16 16 43.42 
50.23 22 19 50.33 
56.73 28 22 56.40 
63.08 35 24 62.70 

19m-wGFl 

Qrn 

3.2 x 10-4 

2.0 x 10-3 
6.0 x 10-3 

1 .1  x 10-2 
2.2 x 

1.0 x 10-2 
1.3 x lo-' 

6.0 x 

Lo L; 
0.17 0.14 
0.36 0.24 
0.003 0.13 
0.18 0.14 
0.25 0.14 
0.047 0.17 
0.13 0.18 
0.14 0.21 

TABLE 2. Comparison of experimental and theoretical mode excitation. The primes indicate 
experimentally measured parameters. 

flow speed, and V, the Alfv6n speed. For a magnetic field strength of 0.2 T, this 
means that @law8 x 5 x so the mean flow is much weaker than that associated 
with axisymmetric waves - i.e. with the velocity field vo. Our neglect of the mean 
flow therefore seems justified for the GF experimental parameters. 

Despite the difficulties in making precise comparisons with experiment, it seems 
likely that the parametric instability corresponds to the transition between regimes 
I1 (waves of frequency 2w) and I11 (non-axisymmetric waves excited by subharmonic 
transitions) observed by GF. As predicted, the growth of non-axisymmetric modes 
occurs only when the field strength exceeds a critical value, and the observed 
dominant mode number m depends on the applied frequency. In theory the mode 
number m to be first excited will be that for which the threshold Lo is smallest - 
roughly speaking that mode which has a resonant frequency closest to the applied 
frequency. In practice however the situation is more complicated. The resonance 
points k 2 2 represent weak transitions with growth rates O(Li) ,  and for the GF 
experiments Lo was of order 10-l. Such weak growth is easily damped by viscosity 
and in practice the observed mode is likely to be the one whose fundamental 
resonance SZ, is closest to w. 

Table 2 compares a number of GF observations with theory. For various 
experimental frequencies wGF the observed mode number m is compared with m' - 
the mode which has SZ, closest to wGF. The suggestion of the previous paragraph is 
supported except for the very high-m modes, which may be significantly affected by 
surface tension. Even for small-m modes (e.g. m = 3) which are influenced by o,, the 
mode number predictions are accurate. This is not surprising since our argument 
simply singles out the mode which responds most readily at  the given applied 
frequency, irrespective of the details of the forcing mechanism. 

It can be shown (Nayfeh & Mook 1979) that in the vicinity of the dominant 
resonance w = SZ, the stability boundary can be approximated by the pair of straight 
lines 

Lo = 4lw - all 
ClIQl 

This formula can be used to make a simple comparison of the observed threshold Lh 
with the theoretical value, Lo = 4~wGF-Q,~/C,,i2,. Here the agreement is not so 
precise - for a number of reasons. 

Most importantly, only small values of Lo (or order 10-l) could be attained 
experimentally, so all observed transitions were at applied frequencies close to a,. 



424 J .  M .  Galpin, Y .  Fautrelle and A .  D .  Sneyd 
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FIGURE 4. Physical illustration of the instability mechanism. 

Slight inaccuracies in the experimental parameters could cause a much larger 
relative error in the frequency separation 152, -wI ,  and hence in the theoretical 
estimate of Lo. I n  particular the Perspex tank deformed slightly under the weight of 
mercury and it proved difficult to measure the radius a to within an accuracy of more 
than 1 mm. Such a variation in a could cause a change in the theoretical Lo of as 
much as 50% ! Table 2 shows that the least accurate predictions of Lo occur when the 
relative frequency separation is small, in which case the experimental Lo is somewhat 
larger since damping will round-off the sharp point of the instability boundary where 
it meets the axis. 

In  practice it proved difficult to measure the threshold Lo. The transition exhibited 
some hysteresis - i.e. the critical Lo for appearance of non-axisymmetric waves as the 
current increased, was somewhat larger than the Lo a t  which they disappeared as the 
current decreased - indicating that nonlinear effects are not entirely negligible. 

4.3. Physical interpretation 
It is of interest to examine the physical mechanism underlying the parametric 
instability. The main cause of the non-axisymmetric mode is the perturbation in the 
initial purely azimuthal current J due to the free-surface deformation. This 
perturbation interacts with the applied magnetic field to create Lorentz force 
perturbations which must be balanced by pressure and inertial forces. We consider 
for example a control volume bounded by the contour ABCD (figure 4) and the radial 
force balance. The radial growth of the electric current J leads to a radial increase in 
the electromagnetic force perturbation. Assuming a balance between pressure and 
the electromagnetic forces (this holds for example near the lateral wall) we find 

p ( R ) - p ( & )  = JQRVp-dx = F,dr < 0, 
J Q R  

where Q and R are points on AB and CD respectively. This shows that the pressure 
must be greater on AB than CD, and consequently the liquid metal height must be 
greater on AB than CD. The present mechanism illustrates how the electromagnetic 
force perturbations can reinforce the free-surface deformation. 
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The radial dependence of J appears to  be essential. We have carried out similar 
calculations for an infinitely long two-dimensional tank, in which J is constant and 
directed along the tank. An equation similar to (2.28a) is obtained, but the diagonal 
coefficients C,, all vanish, so the most important resonance is absent. 

5. Conclusions 
According to our theory the effect of a low-frequency alternating magnetic field on 

a cylindrical tank of liquid metal is twofold : (i)  forced axisymmetric (m = 0) standing 
wavcs are established, and (ii) non-axisymmetric modes (m 2 1 )  may grow as a result 
of parametric instability. 

The instability of a particular m 2 1 mode is governed by a system of coupled 
Mathieu-type equations for the Fourier-Bessel expansion coefficients. Instability 
occurs when w and Lo (forcing frcquency and non-dimensional magnetic field 
strength) lie in certain regions of the parameter plane. The geometry of the 
instability regions is complicated because of the infinitc set of resonant frequencies, 
which are rational combinations of the natural frequencies. However, the strongest 
instability represents subharmonic transition to a mode of frequency w - half the 
frequency of the basic Lorentz force. 

The theory agrees a t  least qualitatively with experiment, in that the appearance 
of non-axisymmetric modes occurs at a threshold magnetic field intensity. Observed 
spectra generally show dominant subharmonic modes, and the mode number m most 
susceptible to excitation is accurately predicted. 

A. D. S. gratefully acknowledges support from the Institut National Polytechnique 
de Grenoble for two visits, each of two months duration, to MADYLAM. Much of this 
work was carried out during these visits. 

Appendix 
Equations (2.19), (2.23), and the standard formulae for Fourier series, give 

where R = h/a  is the aspect ratio of the cylinder, and 5, = A, a is the nth zero of J6. 
From (2.26) and (2.27) 

7;; = ~ $ p > $ q ) / l l $ q l 1 2 7  

where the inner product operator is defined by 

(f79> = J h r ) B ( r ) d r  and Ilfl12 = (f,f>- 
0 

Equations (2.19) and (2.24) show that $* and $ p  satisfy the following equations and 
boundary conditions 1 

r2$”+r$’+( / \~r2 -m2)$*  = 0;  $&a) = 1 ;  $;(a) = 0;  (A 2a-c) 

r 2 v ;  + r f ,  - (p i  r2 + m 2 )  $, = O ; $;(a) = l/a. (A 3% b)  

Multiplying (A 2) by 2$; gives 

d/dr (r$;)2 + (A: r2 -m2)  d/dr ($:) = 0. 



426 

Integrating from r = 0 to  r = a and using the boundary values (A 2 b, c) gives 
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11#,112 = t(a2-m2/hi). (A 4) 

(~W)’+(h;+P;)&+’pr = 0 ;  w = $;+p-&?-&. 

Now multiplying (A 2) by + p ,  (A 3) by q5q, and subtracting, yields 

Integrating from r = 0 to r = a ,  we find 

From (2 .28b) ,  (A 1) and (A 5) i t  follows that 

1 m 

I: 2 m 2 ~ 3 ~  
g - m2 p--co (R2G + p2n2) ( R 2 g  + pen2) ’ ‘nk = 

and using the summation formulae, 

1 

- 1 5 
p--m (a2 +p2x2)  (b2 +p2n2)  b2 

1 1 m - + - - 
p?m (a2 + p 2 ~ 2 ) 2  2a3 tanh a 2a2 sinhe a ’ 

and (A 1 )  and (A 5) ,  we obtain finally, 

m2 1 ”’ = + ( ck tanh @[‘I,) sinh2 (R&) 

Since x m+0.80862mf 
(Abramowitz & Stegun 1965, formula 9.5.16) and one can derive the asymptotic 
formula, 

C,, x 0.61834~~-b as m +  00. 

> m the coefficients are all positive. In  the limit m + 00, 
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